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PROFESSIONAL DETAILS

• PhD student in High Energy Physics at the University of Cambridge, 
• BSc in Physics (Milan,       ), MSc in Physics (ETH Zurich,    )
• Supervisors: Leigh Whitehead and Melissa Uchida (Cambridge), Michael Wang 

(Fermilab)
• Works in the Pandora team -> Software development for Pandora, data analysis 

for ProtoDUNE-SP, specialised in Machine Learning  
• email: sv408@hep.phy.cam.ac.uk
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GOAL OF THE PROJECT

Should we buy one Edge TPU for each desktop at Fermilab and perform inference with it?
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CPU vs GPU vs NPU

Central Processing Unit Graphics Processing Unit Neural Processing Unit
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CPU vs GPU vs TPU

CPU O(10) operation per cycle GPU O(10^4) operation per cycle TPU O(128*10^3) operation per cycle

source https://iq.opengenus.org/cpu-vs-gpu-vs-tpu/
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EDGE COMPUTING

30 mm 

Why Edge? Edge computing is the practice of processing data near the edge of your network, where the data is being generated, 
instead of in a centralised data-processing warehouse.
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SPECIFICATIONS

CPU GPU Edge TPU

Model Intel ® Core ™ i7-8550U @ 1.8 GHz
(4 cores)

NVIDIA Tesla P100 16 GB Coral Edge TPU

TDP* (w) 15 250 2

Price (USD) 409 7500 or 9.99/month 80

*Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates 
when operating at Base Frequency with all cores active under an Intel-defined, high-complexity 
workload.
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NEUTRINO SIMULATED DATASET

• Liquid Argon Time-Projection Chamber (LArTPC) simulated images
• 3 simulated wire planes, 200x200 pixels which mimic wire readouts
• 3 classes of interaction: neutrino neutral current (NN) , muon neutrino charged current 

(νμCC), electron neutrino charged current (ν𝑒CC)

• 10k training images – 2k validation images
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TensorFlow Lite

https://www.tensorflow.org/liteTaken from 

https://www.tensorflow.org/lite
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QUANTISATION AND OPTIMISATION IN TF-LITE
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TF Lite Optimisation Supported 
Hardware

Size Reduction 
with respect to 
TF

Tensor Type Weights Activations

Not Optimised CPU, GPU 
(Android)

~70% Float 32 float32 float32

Post-Training Dynamic 
Range Quantisation

CPU, GPU 
(Android)

~90% Float 32 int8 float32

Post-Training Float16 
Quantisation

CPU, optimised
for GPU (Android)

~80% Float 32 float 16 float32

Post-Training Integer 
Quantisation

CPU, GPU, Edge 
TPU (model must 
be specifically 
compiled) 

~90% Float 32 or Int 8 or Uint 8 (Edge TPU 
only with Uint 8)

int8 int8

Quantisation is a conversion technique that can reduce model size while also improving CPU and hardware 

accelerator latency, with little degradation in model accuracy.
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QUANTISATION AWARE TRAINING
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• Smallest accuracy loss (close to none)
• 90% size reduction
• weights and activations int8
• Coming soon…
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ResNet-50 V2 and DenseNet-169

13

ResNet-50 V2
Validation accuracy 64.15%

DenseNet-169
Validation accuracy 68.6%

Confusion Matrix Values:
0. NN
1. νμCC

2. ν𝑒CC
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RESULTS for ResNet-50 V2

Optimisation Size (MB) Accuracy (same for all hardware) Speed on CPU Speed on 
GPU

Speed on Edge TPU

TensorFlow 274 64.15% 40.88 ms 4.91 ms -

TF Lite Not 
Optimised

90 64.15% 89.36 ms 94.4 ms -

Post-Training 
Dynamic Range 
Quantisation

23 54.35% 548.54 ms 314.76 ms -

Post-Training Float 
16 Quantisation

45 64.15% 114.16 ms 64.05 ms -

Post-Training 
Integer 
Quantisation

24 N.A. (predicted 60-62%) 6.1 s 9.3 s 42.41 ms
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RESULTS for DenseNet-169

Optimisation Size (MB) Accuracy (same for all hardware) Speed on CPU Speed on 
GPU

Speed on Edge TPU

TensorFlow 157 68.6% 48.04 ms 1.83 ms -

TF Lite Not 
Optimised

48 68.6% 81.02 ms 112.14 ms -

Post-Training 
Dynamic Range 
Quantisation

13 63.65% 530.95 ms 296.88 ms -

Post-Training Float 
16 Quantisation

25 68.6% 81.92 ms 114.21 ms -

Post-Training 
Integer 
Quantisation

13 N.A. (predicted 65–67%) 7.6 s 7.2 s 23.67 ms
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Costs

K function = TDP*time/inference [w*ms]
ResNet-50 V2
• best CPU = 613.2 
• best GPU = 1227.5
• best Edge TPU = 84.42

DenseNet-169
• best CPU = 720.6
• best GPU = 457.5
• best Edge TPU = 47.34
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RESULTS

• In terms of pure performance, GPU appears to be by far the fastest piece of hardware.

• In comparison to CPU, Edge TPU is faster and costs less money.

• In comparison to GPU, Edge TPU is one order of magnitude slower but one order of magnitude 
cheaper

• Some TensorFlow-Lite optimizations could be very useful for old/not expensive pieces of 
hardware
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FUTURE WORK

• Complete tests with all of the Keras models available 

• Solve accuracy issue with Post-Training Quantisation and test Quantisation-
Aware Training as soon as available

• Publication
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Q & A

Thank you for your attention! 

Q & A
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BACK-UP: BENCHMARKED NETWORKS
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BACK-UP: MNIST, FASHION MNIST, CIFAR10 with Post-Training

MNIST: 56x56 pixel pictures, 10 labels – 2% accuracy loss
FASHION MNIST: 56x56 pixel pictures, 10 labels – 2% accuracy loss
CIFAR 10: 224x224 pixel pictures 2 channels, 10 labels – 3% accuracy loss


